
Economics

33

* Pavel V. Nazin, post�graduate student of Volga State University of Telecommunication and Informa�

tion. E�mail: vestnik@sseu.ru.

THE ANALYSIS AND VARIANTS OF SOLVING THE PROBLEMS

OF OPERATIVE CACHING WITH THE HELP OF MEMORY CACHE TECHNOLOGY

© 2009 P.V. Nazin*

Keywords: caching, RAM, MemcachDB, Berkeley BD, clustering.

The article considers the process of organizing caching of the dynamically formed content on the

side of web�server. Special attention is paid to the problem of server functioning safety, several

optimization variants are suggested.

Today almost any web�project is dynamic; it

means that pages requested by the user are formed

“just�in�time” with the specific features of the user.

During the process of page formation it is often

necessary to obtain the data from rather slow sourc�

es (for example, a database, a file server, an exter�

nal resource). To generate the response to a diffi�

cult request the quantity of such references can be

estimated in tens, and the time of each reference

processing can vary from ten milliseconds to one

minute. Even with the parallel processing of diffi�

cult requests we will receive unsatisfactory time of

the response.

The solution to this problem is cashing: we

place the result of the calculations in some storage

which has excellent characteristics in terms of time

of access to the information. Now, instead of form�

ing long requests, we address to a fast cache.

As far as web�projects are concerned the suc�

cess of caching is defined by the fact that there are

most popular pages on any site, some data is used

on all or almost all the pages that is there are some

samples which appear to be requested much more

often than others. Therefore there is a possibility

to replace some references to the backend with the

references to the cache.

Memory cached APIs provide a giant hash ta�

ble distributed across multiple machines. When the

table is full, subsequent inserts cause older data to

be put into the least recently used (LRU) order.

Applications using memory cache typically layer

cached requests and additions into the core before

falling back on a slower backing store, such as a

database.

In our research 4 most common problems con�

nected with the performance of cache servers were

revealed.

1. The choice of cache keys: cache sys�

tem imposes some rules limiting the length of the

key line and its uniqueness for each request. We

offer to use the md5 algorithm of encrypting.

2. The loss of keys: cache is not a reliable

storage as the key can be deleted before it expires.

The architecture of the project must react quickly

to the loss of keys. There are 3 main reasons for

losing keys:

1. The key was deleted before it expired be�

cause the memory was used for storing other keys.

2. The key was deleted as it expired. Strictly

speaking, this situation is not a loss, as we limited

the expiry time of this key ourselves. However, the

situation won’t be satisfactory for frontend as the

sorting will be formed again.

3. The most unpleasant situation is the crash

of the cached process or the server where it is

placed. Then we lose all the keys that are stored in

the cache.

3. Clustering and the choice of the algo�

rithm of key distribution: to start the distribu�

tion and to achieve a fail�safe system a cluster of

cached servers is used instead of one server. The

servers forming the cluster can possess different

memory volumes; meanwhile the total cache volume

will be equal to the sum of all the volumes of the

caches of the cached servers forming the cluster.

4. The problem of simultaneous re�forma�

tion of caches: It appears that when several re�

quests to re�format a particular cache are made the

block system is used not to allow the process of

cache reformatting to be launched in parallel.

http://memcachedb.org.

http://ru.wikipedia.org/w/index.php?

title.ru.wikipedia.org/wiki/Hash.

http://weblogs.java.net/blog/tomwhite/ar�

chive/2007/11/consistent_hash.html.

http://www.lastfm.ru/user/RJ/journal/2007/

0 4 / 1 0 / r z _ l i b k e t a m a _ � _ a _ c o n s i s t e n t _

hashing_algo_for_memcache_clients.

http://korchasa.blogspot.com/2008/04/dog�

pile.html.

http://www.oracle.com/technology/products/

berkeley�db.

Received for publication on 16.10.2009


